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ABSTRACT -The linear stability of Walters B viscoelastic fluid saturated horizontal 

porous layer is examined theoretically when the walls of the porous layer are subjected to 

time-periodic temperature modulation. Three types of boundary temperature modulations 

namely, symmetric, asymmetric and lower wall temperature modulation is considered. A 

regular perturbation method based on small amplitude of applied temperature field is used 

to compute the critical values of Rayleigh number and the corresponding wave number. 

The shift in critical Rayleigh number is calculated as a function of modulation frequency, 

viscoelastic parameter and Prandtl number. The effect of all three types of modulations is 

found to be destabilizing as compared to the unmodulated system. This result is in contrast 

to the system with other types of fluids. Besides, the influence of physical parameters on 

the control of convective instability of the system is discussed.  

 

KEYWORDS   Thermal modulation, Porous medium, Walter’s B viscoelastic fluid,         

                  Convection 

Nomenclature 

hA   ratio of heat capacities 

a   horizontal wavenumber 

c   specific heat  

pc   specific heat at constant pressure 

Da   Darcy number, 2/k d  

d  thickness of the fluid layer 
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f   modulation temperature gradient 

g


  gravitational acceleration 

,l m   wave numbers in the x and y- directions 

M   non-dimensional group, 
hA / ε  

p   pressure 

Pr   modified Prandtl number, 2 /ν ε κ  

R   Rayleigh number, 3 /αg Td νκ  

0R  Rayleigh number corresponding to Darcy-Benard convection, R Da  

q


  velocity 

T  temperature 

t   time 

(x, y, z)  space co-ordinates 

Greek Symbols 

α   volumetric expansion coefficient 

ε   porosity of the medium 

ε   small amplitude of the thermal modulation 

ρ   density 

ω   frequency 

φ   phase angle 

   effective thermal diffusivity 

   viscosity,  

vμ   viscoelastic constant of Walters B liquid 

2

h   horizontal Laplacian operator 

PΓ   elastic parameter, 2

0/vμ ε ρ d  

Subscripts/Superscripts 

b  basic state 

c  critical 

0  reference value 

*   dimensionless quantity 

 

 



 ISSN: 2320-0294 Impact Factor: 6.765  

12 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

1. INTRODUCTION 

Thermal convection in fluid saturated porous media has attracted researchers in 

recent decades due to its relevance in a wide range of applications such as geothermal 

energy utilization, enhanced recovery of petroleum reservoirs, thermal insulation 

engineering, nuclear waste repository, grain storage and mantle convection to mention a 

few. The growing volume of work in this area is well documented by [8], [26], [27] and 

[18].  

There has been a growing interest in externally modulated hydrodynamic systems, 

both theoretically and experimentally. These systems may exhibit novel behavior in 

response to parametric forcing near a point of instability. Depending on the relative 

strength and rate of forcing, predictions exist for a variety of responses to the modulation. 

Among these are the upward or downward shifts of the convective threshold compared to 

the unmodulated problems. There are many works available in the literature, concerning 

how a time-periodic boundary temperature affects the onset of Rayleigh-Benard 

convection. Some of the findings related to this problem have been reviewed by [7]. The 

studies related to the effect of thermal modulation on the onset of convection in a porous 

medium have also received equal importance (see e.g. [18]).  

The effect of time-dependent wall temperature on the onset of convection in a 

fluid-saturated porous medium has been studied by [5] using the Darcy model for the 

momentum equation. [6] have studied the stability of a fluid saturated porous layer where 

the imposed temperature on the boundary is time-periodic, with a non-zero mean value. 

They performed experiments and compared their results with those obtained from Floquet 

theory. [21] investigated the stability of a fluid-saturated sparsely packed porous layer 

subject to time-periodic boundary temperature using the Brinkman model. They recovered 

the viscous flow results of [28], as a special case when the value of the porous parameter 

tends to zero. Linear stability analysis of the onset of convection induced by a non-uniform 

time-dependent volumetric heating in a fluid saturated porous medium has been studied by 

[17]. Analytical expression that gives upper bounds on an appropriate critical Rayleigh 

number is derived. The effect of thermal modulation on the convection in a porous medium 

is studied by [11] using the Brinkman model with effective viscosity larger than the fluid 

viscosity. Further [12], [13], [14] have examined the single and double diffusive 

convection in a fluid-saturated anisotropic porous layer subject to time-dependent wall 

temperature. [2] has studied the effect of thermal modulation on the onset of convection in 
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a layer of sparsely packed porous medium bounded by rigid boundaries. Recently, [3] has 

included the effect of rotation, while [4] have included the effect of magnetic field to study 

the onset of convection in a porous medium with temperature modulation.  

With the growing importance of viscoelastic fluids in modern technology and 

industries, the investigations of thermal convective instability in such fluids are desirable. 

In the asthenosphere and the deeper mantle it is well known now that viscoelastic behavior 

is an important rheological process. The thermal convective instability in a viscoelastic 

fluid saturated porous layer has been studied by several authors in the recent past. [10] has 

dealt with the thermal instability driven by buoyancy forces in a horizontal porous layer 

saturated by a viscoelastic fluid. [30] have followed the formulation of [1] and sought 

analytically the onset of thermal convection in an isothermally heated porous layer 

saturated with viscoelastic fluid. [23] and [16] have discussed respectively the effect of 

local thermal non-equilibrium on the onset of convection in a sparsely and densely packed 

Oldroyd-B viscoelastic fluid saturated porous medium. [24] have used linear stability 

theory to investigate convective instability in a horizontal porous layer saturated with 

viscoelastic fluid of Oldroyd-B type in the presence of vertical throughflow and these 

authors have also extended their previous work to include the effect of quadratic drag in 

the presence of an additional diffusing component [25]. Thermal stability of a viscoelastic 

Walters B liquid saturating a porous anisotropic horizontal layer in the presence of a 

chemical reaction has been discussed by [19]. Chaotic convection of viscoelastic fluid 

saturating a porous medium has been analyzed by [22]. 

Nonetheless, the studies related to the effect of thermal modulation on the onset of 

convection in a viscoelastic fluid saturated porous medium have not received much 

attention. [9] has examined the stability of a horizontally extended second-grade fluid layer 

heated from below subject to temperature modulation at walls. [20] have investigated the 

effect of thermal modulation on the onset of convection in a viscoelastic fluid saturated 

porous medium using Oldroyd model and the effect of anisotropy on the problem has been 

analyzed by [15].  

In the present study, however, the effect of thermal modulation on the onset of 

convection in a horizontal layer of porous medium saturated with another class of 

viscoelastic fluids, known as Walters B liquid [29], is investigated.  The boundary 

temperature modulation alters the basic temperature distribution from linear to nonlinear 

which helps in effective control of convective instability. The difficulty in dealing with 
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such instability problems is that one has to solve time dependent stability equations with 

variable coefficients, and to our knowledge no work has been initiated for such fluids in 

this direction. The resulting eigenvalue problem is solved by regular perturbation technique 

with amplitude of the temperature modulation as a perturbation parameter. In particular, it 

is shown that the onset of convection can be advanced by a proper tuning of the frequency 

of the boundary temperature modulation.  

 

2. MATHEMATICAL FORMULATION 

We consider a horizontal layer of Walters B viscoelastic fluid saturated porous 

medium of thickness d in the presence of gravity as shown in Figure 1. The time-dependent 

temperature of lower and upper surfaces of the porous layer are externally imposed and are 

given by 

 0

1

2
1 cosT T T ε ωt                  at   z = 0                                           (1)        

 0

1

2
1 cosT T T ε ωt φ             at    z  = d                                        (2)   

where ε  represents a small amplitude of the thermal modulation, ω  the frequency, φ  the 

phase angle and 0T  is the reference temperature. The time dependent parts denote the 

modulation imposed on the adverse thermal gradient caused by the temperatures 

0 / 2T T   and 0 / 2T T  at the lower and upper surfaces respectively. A Cartesian 

coordinate system (x, y, z) is chosen such that the origin is at the bottom of the porous layer 

and z- axis is directed vertically upward. 

The relevant basic equations are: 

 

0q  


                                                                                                                               (3) 

10
v

ρ q
p ρg μ μ q

ε t k t

  
     

  


 

                                                        (4) 

  2
h

T
A q T T

t



   




                                                                             (5) 

  0 01ρ ρ α T T                                                                                      (6) 

where q


 is the velocity, k is the permeability of the porous medium,  the effective 

thermal diffusivity, p the pressure, g


 is acceleration due to gravity, T the temperature,    
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0 0 0 0 0( ) /( ) [(1 )( ) ( ) ]/( )h m p f s p f p fA c c c c c          the ratio of  heat capacities of 

the fluid saturated porous medium to that of the fluid,    the porosity of the medium, c  the 

specific heat, pc  the specific heat at constant pressure, α  the volumetric expansion 

coefficient,   the viscosity, vμ  the viscoelastic constant of Walters B liquid and 
0

  is the 

reference density. The subscripts m , s and f refer to the porous medium, solid and fluid 

respectively.  

 

2.1 Basic state 

             The basic state is quiescent and the temperature bT , density bρ  and the pressure bp

satisfy 

0b bρ g p 


                                                                                             (7) 

2

2

b b
h

T T
A κ

t z

 


 
 .                                                                                         (8)  

The solution of Eq. (8) satisfying the thermal conditions given by Eqs.(1) and (2) is 

   1 2 ,bT T z ε T z t                                                                                    (9) 

where            

1

2
( ) 1

2

T z
T z

d

  
  

 
                                                                                   (10) 

 2

/ /
( , ) ( ) ( )

λz d λz d iωt
T z t Re b λ e b λ e e

 
   

 
                                    (11)                         

with 

 
1/ 2

2

1
2

hA ωd
λ i

κ

 
   

 
                                                                                (12) 

 
2

iφ λT e e
b λ

λ λe e

   
 

  

                                                                          (13) 

and  Re stands for the real part. The expression for bp  and bρ  is not given as they are not 

explicitly required in the subsequent analysis.  

 

3.  LINEAR STABILITY ANALYSIS  

We give an infinitesimal disturbance to the basic state in the form 

q q
 

, bT T θ  , bp p p                                                                  (14) 
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where, q ,θ  and p  represent the perturbed quantities. Substituting Eq.(14) in Eq.(4),   

eliminating the pressure by operating curl twice and retaining the vertical component, we 

get (after ignoring the primes).  

2 2

0

1
1 v

hw g
t k t


 

  

   
      

   
                                                  (15) 

 where 2 2 2 2 2/ /h x y       is the horizontal Laplacian operator. 

 Substituting Eq. (14) in Eq. (5) and linearizing, we obtain (after ignoring the primes) 

2 b
h

TT
A T w

t z



  

 
.                                                                            (16) 

 Non- dimensionalizing the equations by setting 

 * * * *

2
, , , , , , ,

/ /

x y z T w t
x y z T w t

d d d T κ d d ε κ

   
    

 
             (17) 

and substituting in Eqs. (15) and (16), we obtain respectively 

1 2 21
1 0P

h

Γ
Da w R θ

Pr t Pr t

   
       

   
                                             (18) 

2 bT
M w

t z


 
   

  
                                                                           (19) 

where 
3 /R αg Td νκ   is the Rayleigh number, 2/Da k d  is the Darcy number 

2

0/P vΓ μ ε ρ d  is the elastic parameter,
2 /Pr ν ε κ   is the modified Prandtl number and 

M = 
hA / ε   is the non-dimensional group.  

Equations (18) and (19) are to be solved subject to the boundary conditions  

0 w θ   at    z = 0,1.                                                                             (20)                                                                                                

 Eliminating T from Eq. (18) using Eq. (19), we obtain the following equation  

2 1 2 21
1 0bP

h

TΓ
M Da w R w

t Pr t Pr t z

      
          

       
 .            (21)                        

The dimensionless basic temperature gradient is given by  

1bT
εf

z


  


 .                                                                                           (22) 

Here f  is the modulation temperature gradient and is given by                                   

     iωtλz λzf Re A λ e A λ e e
   

  
  

where 



 ISSN: 2320-0294 Impact Factor: 6.765  

17 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

( )
2

iφ λλ e e
A λ

λ λe e

  
 

  

 

1/ 2

(1 )
2

M ω
λ i

 
   

 
.                                                                                  (23) 

The value of M is set equal to one in our further analysis for simplicity.  

 

4. METHOD OF SOLUTION 

The aim of this section is to determine the eigenfunction w and the eigenvalue R of 

Eq. (21) from the basic temperature gradient given by Eq. (22) that departs from the linear 

profile / 1bT z    in modulated system by the quantities of the order ε . It follows that the 

eigenfunction and the eigenvalue of the present problem differ from those associated with 

usual Darcy-Benard convection by quantities of order ε . From Eq. (21) we can also see 

that when the temperature profile is linear, as far as stationary instability is concerned, the 

viscoelastic properties of the fluid have no effect on the onset of linear instability. We 

assume the solution of Eq. (21) in the form 

       2

0 0 1 1 2 2, , , , ......R w R w ε R w ε R w                                            (24) 

where 0R  is the Rayleigh number corresponding to classical Darcy-Benard convection. 

Substituting Eq. (24) into Eq. (21) and equating different powers of ε , we obtain the 

following system of equations: 

0 0Lw                                                                                                       (25) 

2 2

1 1 0 0 0h hLw R w R f w                                                                             (26) 

2 2 2 2

2 1 1 2 0 0 1 1 0h h h hLw R w R w R f w R f w                                                 (27) 

where  

2 1 2 2

0

1
1 P

h

Γ
L M Da R

t Pr t Pr t

     
          

      
. 

We now assume the marginally stable solutions for (25) in the form   

   ( )

0 ( )nw sin nπz exp i lx my  ,  n=1,2,3,……                                       (28a) 

where l  and m are the wave numbers in the x and y- directions respectively such that 

2 2 2l m a  . The corresponding eigenvalues are given by 

 
2

1 2 2 2

( )

0 2

n
Da n π a

R
a

 
 .                                                                      (28b) 
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For a fixed value of the wave number a, the least eigenvalue occurs at n=1 and is given by 

 
2

1 2 2

0 2

Da π a
R

a

 
 .                                                                                (29) 

 We note that 0R  attains its critical value, 0cR  at ca a , where                                                                                                                    

2 14πocR Da                                                                                             (30)  

ca π .                                                                                                       (31) 

The viscoelastic parameter is not appearing in the above expressions and these are the 

known exact values reported in the literature for a Newtonian fluid saturated porous layer 

[4]. As far as the steady state is concerned there is no distinction between the viscoelastic 

and viscous fluid results. Equation (26) is inhomogeneous and its solution poses a problem 

due to the presence of resonance terms. The solvability condition requires that time 

independent part of the right-hand side of Eq. (26) should be orthogonal to 0w . The term 

independent of time on the right hand side is 2

1 0hR w  so that 1 0R  . It follows that all the 

odd coefficients, i.e., 1R , 3R ,… in Eq. (24) must vanish. If we expand the right-hand side of 

Eq. (26) in a Fourier series of the form 

     
1

λz
nm

n

e sin mπz g λ sin nπz




                                                             (32) 

then 

         
 

   

12
1

2 22 2 2 2
0

4 1 1
2

n m λ

λz
nm

nmπ λ e
g λ e sin mπz sin nπz dz

λ n m π λ n m π

    
  

      
   

 .      (33)  

We thus obtain  

   ( , )iωt iωtL sin nπz e L ω n sin nπz e   
  ,

                                              (34) 

where 

 
     

 
   

2 2 2 2
2 2

1 1 2 2 2 1 2 2

2 2
2 2 2 1 2 2 2

1 2 2 2

( , ) 1

.

P

P

ω n π a
L ω n Da Γ Da n π a Da π a

Pr

n π a Da Γ n π a
iω Da n π a

Pr Pr

  






     

  
    
 
 

    (35) 
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From Eq. (26) we have 

         2
1 0 1 1

iωt
n n

n

Lw R a Re A λ g λ A λ g λ sin nπz e
 

      
 
 .              (36) 

We obtain 1w , by inverting the operator L term by term, in the form 

,

                                           (37) 

where 

         1 1n n nB λ A λ g λ A λ g λ    . 

The solution of the homogenous equation corresponding to Eq. (36) involves a term 

proportional to sin( )πz . However, addition of such a term to the complete solution of Eq. 

(36) merely amounts to a renormalization of 0w  because all the terms proportional to 

sin( )πz  can then be grouped to define a new 0w  with corresponding definition for 1w , 2w , 

etc. Hence, we can assume that 0w  is orthogonal to all other nw ’s. From Eq. (27) we get 

2 2
2 0 1 2 0 Lw a R f w a R w  .                                                                       (38) 

We do not require the solution of this equation, but merely use it to determine 2R , the first 

nonzero correction to R . The solvability condition requires that the steady part of the 

right-hand side is orthogonal to sin( )πz . Thus, 

 
1

2 0 1

0

2R R fw sin πz dz                                                                            (39) 

where the upper bar denotes the time average. From Eq. (26) we have 

    1 1 12
0

1
f w sin πz w Lw

R a
  .                                                                      (40) 

Using Eqs. (36) and (37) and finding the time average we obtain 1 1w Lw , which yields from 

Eqs. (39) and (40), 

 

 
   

2
2 2

*0
2 2

, ,
4 ,

nB λR a
R L ω n L ω n

L ω n

  
                                           (41)  

where 
*( , )L ω n  is the complex conjugate of ( , )L ω n . The critical value of 2R , denoted by 

2cR , is obtained at the wave number given by Eq. (31)  for the following three different 

cases: 

 

 
 2

1 0
,

n iωt

n

B λ
w R a Re sin nπz e

L ω n


   

   
   

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 Case(i)  Oscillating wall temperature field is symmetric ( 0  ).  

            Case(ii)  Oscillating wall temperature field is asymmetric (  ) .   

            Case(iii) Only lower wall temperature is modulated while the upper one is  

                           held at  constant temperature ( i    ). 

  

Case(i)  Oscillating wall temperature field is symmetric ( 0  ) 

 The oscillating temperature field is symmetric when 0φ   and it is found that 

 
   

2 4 2
2

4 42 4 2 4

16

1 1
n

n π ω
B λ

ω n π ω n π


      
   

                                         (42) 

                  
2

nb   (say),  if n is even 

                    =  0  ,      if n is odd. 

Then 

 

2
20

2 2 22

c c

c n

n

R a A
R b

A B



                                                                   (43) 

where 

      
 

   
 

 

2 2 2 2 2 1 2 2 2
2

1 2 2 2

2
1 2 2

,
c p c

c

c

ω n π a ω Da Γ n π a
A Re L ω n Da n π a

Pr Pr

Da π a







 
      

 

     (44a) 

and 

     

   
   

2 2
2 2 2 1 2 2 2

1 2 2 2Im ,
c p c

c

n π a Da Γ n π a
B L ω n ω Da n π a

Pr Pr





  
         
 

.     (44b) 

The summation in Eq. (43) extends over even values of n.  

 

Case(ii) Oscillating wall temperature field is asymmetric (  ) 

This case is corresponding to out-of-phase temperature modulation with φ π  and 

we obtain  

2 2
( )n nB λ b     if n is odd             

                         =  0       if n is even .                                                                     (45) 
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 Then 2cR , has the same expression as Eq. (43) with the summation extending over odd 

values of n only. 

 Case (iii) Only lower wall temperature is modulated while the upper one is  

                   held at  constant temperature ( i    ). 

This is the case corresponds to φ i   and we have 

2

2
( )

4

n

n

b
B λ  . 

Again 2cR  is given by Eq. (43) but the summation extends over all values of n.  

The variation of 2cR  with ω  for different physical parameters is shown in Figures 

2-10 and the results are discussed in the next section.  

 

5. RESULTS AND DISCUSSION 

The effect of thermal modulation on the onset of convection in a layer of Walters B 

viscoelastic fluid saturated porous medium is investigated. A perturbation technique with 

amplitude of the modulating temperature as a perturbation parameter is used to find the 

critical thermal Rayleigh number as a function of frequency of the modulation, elasticity 

parameter, Darcy number, and Prandtl number.  The stability of the system is characterized 

by the sign of the correction critical Rayleigh number 2cR . A positive and negative 2cR  

respectively represents a stabilizing and destabilizing effect of thermal modulation on the 

system as compared to the unmodulated system.  

The analytic expression obtained for 2cR  is computed for various values of physical 

parameters for the following three cases: 

(a) Oscillating wall temperature field is symmetric, i.e., the wall temperatures are 

modulated in phase, 0 , 

(b) Oscillating wall temperature field is asymmetric, i.e., the wall temperatures are 

modulated out-of-phase modulation,   , and 

(c) Only the temperature of the bottom wall is modulated, the upper wall being held at 

a fixed constant temperature, φ i   . 
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The results obtained for the above cases are depicted in Figures 2- 10 as a function of 

frequency of temperature modulation  for different values of physical parameters.  

Figure 2 is a plot of the correction Rayleigh number 2cR  versus   for different 

values of elasticity parameter PΓ  when Pr =10 and 
510Da   for the case of symmetric 

modulation of the wall temperature. We observe that, in general, 2cR  is negative over the 

whole range of frequencies, indicating that the symmetric temperature modulation has a 

destabilizing effect on the system. That is, in the presence of thermal modulation, 

convection sets in at lower values of Rayleigh number as compared to the unmodulated 

system. Further, it is noted that as the elasticity parameter PΓ  increases, the magnitude of 

correction Rayleigh number 2cR increases indicating that the effect of elasticity parameter 

is to advance the onset of convection. Besides, the curves for different values of PΓ  are 

very close to zero when the modulation frequency is very small. Hence, the modulation has 

little effect on the stability of the system when   approaches to zero value. As   

increases, 2| |cR  increases to its maximum value initially and then starts decreasing with 

further increase in  . When   is very large, all the curves for different PΓ  coalesce and 

2| |cR  approaches to zero. This means that the modulation with large frequency will have 

no substantial effect on the stability characteristics of the system. This figure also indicates 

that the peak negative value of 2cR  increases with an increase in the value of PΓ . 

 The results obtained for the case of asymmetric modulation with Pr =10 and 

510Da  are presented in Figure 3. We note that the curves of 2cR  versus   for different 

values of elasticity parameter PΓ  do not coalesce as the modulation frequency approaches 

to zero. Moreover, 2| |cR  increases monotonically with an increase in the value of   

without attaining any peak value for a fixed value of elasticity parameter PΓ , and all the 

curves for different PΓ  coalesce at higher values of  . 

           Figure 4 displays the variation of 2cR  versus   for different values of PΓ  with Pr

=10 and 
510Da   for the case of only lower wall temperature modulation. Here also we 

observe that 2cR  is negative over the whole range of frequencies as noticed in the case of 

symmetric and asymmetric modulation of the wall temperature. From this figure it is 

observed that at low frequencies, 2| |cR  increases with increasing PΓ , and approaches to 

zero for large values of frequencies.  
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          The effect of Prandtl number on the correction Rayleigh number 2cR  with 
510Da   

and PΓ =0.1 for the cases of 0 ,   and i   is  shown in Figures 5, 6 and 7 

respectively as a function of  . We observe that in general, the magnitude of the 

correction Rayleigh number decreases with increase in the value of the Prandtl number 

indicating that the Prandtl number has stabilizing effect in the case of symmetric, 

asymmetric and of lower wall temperature modulation.  

         The variation of 2cR as a function of   for different values of Darcy number Da  is 

shown in Figures 8, 9 and 10 for symmetric temperature modulation, asymmetric wall 

temperature modulation and only lower wall temperature modulation, respectively when 

Pr =10 and PΓ =0.1. From the figures it is evident that effect of increase in Da  has 

qualitatively similar effect as that of Prandtl number. That is the effect of increasing Darcy 

number decreases the magnitude of the correction Rayleigh number indicating that the 

Darcy number enhances the stability.  

 

6. CONCLUSION 

The effect of thermal modulation on the onset of convection in a horizontal layer of 

porous medium saturated with Walters B viscoelastic fluid is studied using a linear 

stability analysis. The analytic expression obtained for 2cR  is computed for various values 

of physical parameters for the cases of (i) oscillating wall temperature field is symmetric 

(i.e., the wall temperatures are modulated in phase, 0 ), (ii) oscillating wall temperature 

field is asymmetric ( i.e., the wall temperatures  are modulated out-of-phase ,   ) and 

(iii) only lower wall temperature is modulated and the upper wall being held at a fixed 

constant temperature ( i.e., φ i   ), and the following conclusions may be drawn: 

(1) The effect of all three types of modulation namely, symmetric, asymmetric, 

 and only lower wall temperature modulations is found to be destabilizing as 

 compared to the unmodulated system.  

  (2) The effect of thermal modulation disappears at large frequencies in all the   

        cases of thermal modulation . 

 (3) Increase in the value of Pr and Da  is to decrease 2| |cR , while increase in PΓ   

       increases the magnitude of the correction Rayleigh number in all the cases. 

 (4) The critical correction Rayleigh number 2 0cR   with increase in  faster   

        for large values of Da .          
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